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ABSTRACT

Through learning small and large-scale image features, we

can capture the local and architectural structure of tumor tis-

sue from histology images. This is done by learning a hier-

archy of dictionaries using sparse coding, where each level

captures progressively larger scale and more abstract proper-

ties. By optimizing the dictionaries further using class labels,

discriminating properties of classes that are not easily visu-

ally distinguishable to pathologists are captured. We explore

this hierarchical and task-driven model in classifying malig-

nant melanoma and the genetic subtype of breast tumors from

histology images. We also show how interpreting our model

through visualizations can provide insight to pathologists.

Index Terms— histology, tumor, image classification,

feature learning

1. INTRODUCTION

Pathologists diagnose cancer and predict prognosis by exam-

ining histology images of tumor tissue. Hematoxylin and

eosin (H&E) is the most widely used set of stains and turns

nuclei blue and cytoplasm pink. From this cell-level view of

tumor tissue, pathologists look for signs of tumor progression

including irregularly shaped nuclei and lack of cell specializa-

tion. With the further information provided by gene expres-

sion, tumors can now be grouped into clinically relevant sub-

types to aid treatment decisions [1]. However, gene expres-

sion ignores the spatial arrangement of tumor tissue. It is only

through histology images that we are able to analyze the cy-

tological and architectural structure, which describe local-cell

level properties and larger-scale organization, respectively.

Histological analysis presents many challenges due to

variations in staining and biological heterogeneities. Each

tissue type has specialized structures, making hand-crafted

features developed for one type difficult to apply to another.

Tumors from different genetic subtypes may also appear sim-

ilar, requiring features that capture their subtle differences.

Our analysis focuses on two specific applications: diagno-

sis of melanoma (skin cancer) and subtyping of breast tumors.

While the current standard for diagnosis involves histological

review by a pathologist, breast tumor subtypes are not known

to be distinguishable by pathologists from H&E images alone.

We hope to determine whether these subtypes manifest mor-

phologically and learn properties that can distinguish them.

The contributions of this work are as follows: 1) We cap-

ture biologically-relevant features by operating on the hema-

toxylin and eosin stain intensities extracted from histology

images. 2) Task-driven dictionary learning discovers the sub-

tle differences between tissue classes. 3) Architectural prop-

erties of tissue are captured with a hierarchical model. 4) Our

visualizations provide insight into which tissue regions con-

tribute to the overall classification of a sample.

2. BACKGROUND

Most automated analysis of histology follows a general

pipeline of first segmenting nuclei, then characterizing color,

texture, shape, and spatial arrangement properties of cells

and nuclei [2, 3, 4]. These hand-crafted features are time-

consuming to develop and do not adapt easily to new data

sets. More recent work has begun to learn appropriate fea-

tures directly from image patches [5, 6, 7].

Sparse coding has been shown to produce superior image

classification results in comparison to other encoding meth-

ods when used in a single-level dictionary learning framework

[8]. Additional modifications to improve the discrimination

capability of the dictionary involve combining the reconstruc-

tion and classification error into a single objective function

[9, 10, 11]. This helps to capture fine-grained differences be-

tween classes. Mairal et al. applied this to improve recogni-

tion of hand-written digits [11]. We extend it to a hierarchical

dictionary learning framework for classifying large images.

Also making use of hierarchical learning, recent successes

in deep learning have been shown in recognizing hand-written

digits and objects [12, 13], and also applied to histology for

specific tasks such as mitosis detection [14]. We expect the

stronger encoding mechanism provided by task-driven sparse

codes will lead to better classification and plan to provide a

detailed comparison in future work.
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Fig. 1. Images are first color normalized and the hematoxylin,

eosin, and residual stain channels extracted. Each image

patch is encoded using a dictionary. Following encoding, a

max pooling operation downsizes the image. By alternating

encoding and pooling layers, a hierarchy of features is formed

3. APPROACH

This section outlines the steps to learn hierarchical task-

driven dictionaries and apply them to encode images for

classification. Fig. 1 provides an overview of image encod-

ing.

3.1. Pre-processing

Color and intensity normalization is first applied to standard-

ize the appearance across slides, countering effects due to dif-

ferent stain amounts and protocols, as well as slide fading. We

use the method by Niethammer et al. that estimates the stain

vectors for hematoxylin and eosin and normalizes each image

[15]. The resulting stain intensity channels are then used as

input to the rest of our algorithm.

The next step of learning a dictionary will operate on

square patches extracted from training images. We first ap-

ply mean centering and a Zero-phase Component Analysis

whitening step to reduce the redundancy of individual patches

by making the features uncorrelated and to give each feature

a similar variance [16]. This centering and whitening process

is applied prior to encoding for each level of the hierarchy.

3.2. Unsupervised Dictionary Learning

We use sparse coding to learn a dictionary of features to rep-

resent image patches. The elastic net formulation looks for

a small number of dictionary elements that, through a linear

combination, can reconstruct a given image patch. This opti-

mization is formulated as

α∗(x,D) = argmin
α

1

2
‖x−Dα‖2 + λ1‖α‖1 + λ2‖α‖

2
2 (1)

for image patch x, dictionary D, and coefficients α, in which

we minimize the reconstruction error while encouraging a

sparse solution with an ℓ1 norm and adding stability in the

case of correlated variables with the ℓ2 norm. Due to the com-

putationally intensive nature of evaluating the elastic net, we

perform this on a GPU.

The dictionary is computed from a set of whitened image

patches by first initializing with random patches. Alternat-

ing optimizations are used to minimize the objective in (1),

summed over a set of training patches. We use the online

batch implementation by Mairal et al. [17].

3.3. Task-Driven Dictionary Learning

The discriminating power of the dictionary is improved by in-

corporating image label information into the dictionary learn-

ing framework. By minimizing the logistic loss, we learn a

linear discriminant for two classes based on the sparse en-

codings of individual image patches. Although we focus on

binary classification here, the logistic could be replaced with

the softmax function to generalize to multiple classes.

We initialize the dictionary using the unsupervised dic-

tionary learning procedure detailed in the previous section.

An initial linear classifier is learned using logistic regres-

sion on the encodings α∗(x,D) of a set of training patches

x1, ..., xN . The classifier is defined by a separating hyper-

plane w such that if wTα∗(x,D) + w0 > 0, patch x is

predicted to belong to class 2, and class 1 otherwise. The

formula 1/[1 + e−(wTα∗(x,D)+w0)] predicts a probability

indicating how likely the patch is to belong to class 2.

In improving the dictionary and classifier, the logistic loss

objective function we use is as follows:

f(D,w) = min
w,D

N∑

n=1

log[1+e−yn(w
Tα∗(xn,D)+w0)]+

ν

2
‖w‖22

where yn is the class label (-1 or 1) associated with each

patch xn, w defines the hyperplane separating the two classes,

α∗(x,D) is defined in (1), and parameter ν controls the reg-

ularization. We optimize this objective by stochastic gradient

descent, updating D and w as

D ← D − γ▽Df(D,w) w ← w − γ▽wf(D,w)

where γ is the learning rate, and ▽wf(D,w) and ▽Df(D,w)
are calculated from the logistic loss function f(D,w) using

▽Dα∗(x,D) derived by Mairal et al. [11].

3.4. Hierarchy of Features

Now that we can form dictionaries of learned features and use

them to encode images, we turn to the problem of forming

a feature hierarchy to capture more abstract and larger scale

properties. After densely encoding every patch in an image,

a max pooling operation is applied in which, for each m×m
region, we take the maximum encoded value for each feature.

This has the effect of providing local translation invariance



and downsizing the representation to enable capture of larger-

scale properties by the next level. Encoding and max pooling

operations are alternated to form a feature hierarchy.

3.5. Classification

At this point, each image is represented by a set of sparse

encodings of features from each level of the hierarchy and we

must predict the image-level class. We can apply the logistic

regression classifier to each image patch or summarize the

encodings themselves and train a new classifier. We compare

four image-level classification methods:

1. The mean of the patch probabilities over the image.

2. The sum of the log of patch probabilities (equivalent to

multiplying probabilities).

3. A new logistic regression classifier to operate on quan-

tile functions summarizing patch probabilities.

4. A Support Vector Machine (SVM) to operate on his-

tograms of the patch encodings (equivalent to a mean

pool of the encodings).

For the first two options, we found it to work best if a thresh-

old to separate the two classes is learned on the training data.

3.6. Implementation Details

The procedure used for selecting parameter settings is out-

lined here. Patch sizes of 9 × 9, 5 × 5, and 3 × 3 and dic-

tionary sizes of 128, 192, and 256 were used for the three

levels, respectively, with a 3 × 3 max pool for each. Dic-

tionary learning requires setting the regularization parameters

λ1 and λ2 (Section 3.2). We selected λ1 from 0.25, 0.5, 1.0,

and 2.0 as the value that produced the best patch classification

accuracy through cross-validation on the training set. We set

λ2 to λ1/10 to add some stability to the model, while keeping

the ℓ1 norm as the main mode of regularization. The logistic

loss of task-driven dictionary learning requires a regulariza-

tion parameter ν (Section 3.3). We also learned this from the

data as the value from 10−6 to 101 that produced the great-

est patch classification accuracy. During learning, patches are

randomly selected from each image and are randomly flipped

and/or rotated to add more variety to the data. A learning rate

γ of 10−5 was found to work with our data sets in combina-

tion with a batch size of 500000/N patches from each image,

where N is the number of training images, and 60, 20, and 15

cycles through the training set for the three levels respectively.

4. EXPERIMENTS

We assess both unsupervised and task-driven dictionary learn-

ing as a hierarchy by comparing the classification accuracy on

two data sets.

Melanoma vs. nevi Breast subtype

U TD U TD

Level 1 55.2% 59.0% 50.7% 52.0%

Level 2 59.8% 63.9% 56.4% 58.0%

Level 3 59.0% 70.0% 51.1% 54.6%

Table 1. Patch-level classification accuracy comparing unsu-

pervised dictionaries (U) with task-driven dictionaries (TD)

for a 3-level hierarchy.

4.1. Data Set

Our melanoma data set consists of whole slide images in

which a pathologist has annotated an average of eight regions

containing tumor. 31 of these samples contain varying de-

grees of dysplastic nevi (benign), while 21 contain melanoma.

Our second data set contains breast tumor samples from

a Washington University cohort of patients [1]. These take

the form of a tissue microarray with two cores per patient and

were imaged at the University of British Columbia. We pre-

dict the subtype of the 43 Basal and 42 Luminal A samples.

4.2. Classification Results

In order to assess the importance of both the task-driven and

hierarchical components of our model, we set up experiments

to measure the patch-level and patient-level classification ac-

curacy using 5-fold cross-validation. Although prediction ac-

curacy on patients is expected to be much greater than that on

local patches, both provide a means of validation and the later

is important for model interpretation in Section 4.3.

First, using the logistic regression classifiers trained dur-

ing task-driven dictionary learning, we compute the patch-

level classification accuracy before and after the task-driven

learning process (Table 1). Both data sets show a consis-

tent improvement of task-driven dictionaries over unsuper-

vised ones. The melanoma data set also shows a consistent

improvement from level 1 to 3, with a small decrease in the

unsupervised dictionary performance for level 3. The breast

subtype results show a significant drop in performance for

level 3 for both methods. This data set is much more complex

and poses a more challenging problem. Algorithm parameters

such as patch size and dictionary size likely need to be better

tuned to get better results on this data set.

We also measure the patient-level classification accuracy

using each of the methods detailed in Section 3.5 (Table 2).

This shows a fairly consistent improvement from level 1 to

3 for the first three methods that summarize the image us-

ing the patch classifier. However, the breast subtype results

are not as consistent as those for melanoma, likely due to the

reasons already mentioned for the patch-level results. The

task-driven dictionary method outperforms the unsupervised

dictionary on the melanoma data set, but only in some settings

on the breast subtype data set. The SVM method on feature



Melanoma vs. nevi Breast subtype

U TD U TD

1. Mean of patch probabilities

Level 1 65.5% 53.6% 61.5% 59.3%

Level 2 82.9% 84.4% 64.9% 64.6%

Level 3 84.5% 88.5% 70.1% 62.1%

2. Sum of log of patch probabilities

Level 1 63.3% 74.7% 64.6% 64.2%

Level 2 84.7% 86.5% 62.4% 63.4%

Level 3 82.7% 88.4% 67.5% 58.6%

3. Logistic regression on quantile of patch probabilities

Level 1 59.6% 67.5% 72.9% 66.4%

Level 2 79.1% 78.5% 65.7% 63.7%

Level 3 81.1% 82.4% 63.5% 65.6%

4. Linear SVM on histogram of features

Level 1 86.5% 84.7% 69.8% 71.3%

Level 2 84.7% 84.5% 70.6% 65.4%

Level 3 82.9% 84.4% 68.3% 70.2%

Table 2. Patient-level classification accuracy comparing un-

supervised dictionaries (U) with task-driven dictionaries (TD)

for a 3-level hierarchy using the four different methods de-

scribed in Section 3.5.

histograms performs well across the different levels, but does

not show an improvement from higher levels.

For comparison, we also tested the set of hand-crafted

features developed by Miedema et al. that capture the size,

shape, stain intensity, texture, and local spatial arrangement

of cells and nuclei [2]. We summarized these measures as

the mean and standard deviation of each across all cells in

the image and measured the 5-fold cross-validation accuracy

using a linear SVM. On the melanoma data set, these hand-

crafted features achieved a classification accuracy of 89.9%,

only slightly higher than our best feature learning results. For

the breast subtype data set, they achieved 69.9% accuracy,

only slightly lower than our best feature learning results.

4.3. Model Interpretation

We now turn to the problem of identifying which regions of

an image are most associated with each class. Using the lo-

gistic regression classifier trained on patches, we can predict

the probability that an individual patch belongs to each class

(Section 3.3). We form a colormap in which blue indicates

class 1 has a higher probability, red indicates class 2, and

white is neutral. This is shown for a melanoma image in

Fig. 2 and compares the results from unsupervised and task-

driven dictionaries for a 3-level hierarchy. These results show

that the task-driven dictionary produces a slightly higher con-

fidence in classification for levels 1 and 2, as indicated by

slighty more red coloring and less blue. The confidence in

melanoma also increases up the levels; however, level 3 shows

a decrease in confidence for the unsupervised dictionary.

Level Unsupervised Task-driven

Original image

(melanoma)

1

2

3

Fig. 2. Relevance maps for a sample image: red indicates fea-

tures associated with melanoma; blue indicates benign nevi.

5. DISCUSSION

We have shown the application of hierarchical task-driven

dictionary learning in predicting the diagnosis of melanoma

and the subtype of breast tumors. Our method achieved clas-

sification accuracies comparable to that using hand-crafted

cell morphology features. The patch-level classification re-

sults indicate that the task-driven method has great promise in

learning subtle features that distinguish classes. It is not clear

to us yet which of the four image-level classification methods

is best suited for our task, and so we will continue to refine

these methods. We also have plans to compare performance

with a convolutional neural network.

Our method for identifying regions of an image most as-

sociated with a particular class produced a visualization that

highlights important areas of the image. Since interpreting

our models in the context of pathology is so important in the

application area of medicine, we will continue to investigate

other methods for visualization and interpretation of features.
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