HIERARCHICAL TASK-DRIVEN FEATURE **LEARNING FOR TUMOR HISTOLOGY**

Heather D. Couture (heather@cs.unc.edu), J.S. Marron, Nancy E. Thomas, Charles M. Perou, Marc Niethammer – University of North Carolina

Problem Definition

Image classification:

Applications:

- Diagnosis differentiate between benign and malignant lesions
- Prognosis identify dangerous tumors
- Subtyping complement recent methods that target treatment

Goal: improve predictions by using automated image analysis

- Faster
- More repeatable
- Capture properties that pathologists cannot

Method: learn dictionary of patch-based features by sparse coding to describe tumor tissue and predict class

Contributions:

- 1) Discover subtle differences between classes with task-driven dictionary learning
- 2) Capture local and architectural structure with a hierarchical model
- 3) Provide insight into sample classification with

visualizations

Unsupervised Dictionary Learning

Model image patches as sparse linear combinations of dictionary elements

Task-Driven Dictionary Learning

Tune dictionary to classification task

..... classifier

Approach: minimize logistic loss by updating classifier and dictionary using stochastic gradient descent

Algorithm:

Initialize dictionary with unsupervised dictionary learning Initialize classifier with logistic regression on set of patches

Repeat until convergence:

- Select random images patches
- Compute sparse encodings
- Update classifier with gradient descent step

• Update dictionary with gradient descent step

Hierarchy of Features

To capture structures at different scales: Form hierarchy by alternating encoding and max pooling

- Local translation invariance
- Downsizes representation to capture larger-scale properties on next level

Classify images by applying task-driven patch classifier and taking mean across image

Results

Melanoma vs. mole

Breast tumor subtype

Interpreting classification models:

Apply classifier to patches within image to determine which regions are contributing to the predicted class

whole slide

31 benign nevi, 21 melanoma

43 Basal, 42 Luminal A

Patch-level Classification Accuracy

	Melanoma vs. mole		Breast tumor subtype Basal vs. Luminal A	
	Unsupervised dictionary	Task-driven dictionary	Unsupervised dictionary	Task-driven dictionary
Level 1	55.2%	59.0%	50.7%	52.0%
Level 2	59.8%	63.9%	56.4%	58.0%
Level 3	59.0%	70.0%	51.1%	54.6%

Patient-level Classification Accuracy

	Melanoma vs. mole		Breast tumor subtype Basal vs. Luminal A	
	Unsupervised dictionary	Task-driven dictionary	Unsupervised dictionary	Task-driven dictionary
Level 1	65.5%	53.6%	61.5%	59.3%
Level 2	82.9%	84.4%	64.9%	64.6%
Level 3	84.5%	88.5%	70.1%	62.1%

Level Unsupervised dictionary Task-driven dictionary

